Mathematics and Deep Learning Collective
Author: Lona
Author: Lona
Dr. Levon Nurbepkyan, from UCLA
Title: A neural network approach for high-dimensional real-time optimal control
Abstract: Due to fast calculation at the deployment, neural networks (NN) are attractive for real-time applications. I will present one possible approach for training NN to synthesize real-time controls. A key aspect of our method is the combination of the following features:
With these techniques, we can solve problems in hundreds of dimensions. We also find some unexpected generalization properties. The talk is based on two recent papers https://arxiv.org/abs/2104.03270 and https://arxiv.org/abs/2011.04757.
Brief bio: I am currently an Assistant Adjunct Professor at the Department of Mathematics at UCLA. I obtained my Ph.D. in the framework of UT Austin — Portugal CoLab under the supervision of Professors Diogo Gomes and Alessio Figalli. My research interests include calculus of variations, optimal control theory, mean-field games, partial differential equations, mathematics applied to machine learning, dynamical systems, and shape optimization problems. I have been a Senior Fellow at the Institute for Pure and Applied Mathematics (IPAM) at UCLA for its Spring 2020 Program on High Dimensional Hamilton-Jacobi PDEs and a Simons CRM Scholar at the Centre de Recherches Mathématiques (CRM) at the University of Montreal for its Spring 2019 Program on Data Assimilation: Theory, Algorithms, and Applications.
You can also find info at https://faculty.sites.iastate.edu/hliu/MDL.