All Articles

Discrete Math Seminar: Uniform Turán density

Author: Lona

Speaker:  Samuel Mohr, Masaryk Univerisity


In the early 1980s, Erdős and Sós initiated the study of the classical Turán problem with a uniformity condition: the uniform Turán density of a hypergraph HH is the infimum over all dd for which any sufficiently large hypergraph with the property that all its linear-size subhyperghraphs have density at least dd contains HH. In particular, they raise the questions of determining the uniform Turán densities of K4(3)−K_4^{(3)-} and K4(3)K_4^{(3)}. The former question was solved only recently in [Israel J. Math. 211 (2016), 349–366] and [J. Eur. Math. Soc. 97 (2018), 77–97], while the latter still remains open for almost 40 years. In addition to K4(3)−K_4^{(3)-}, the only 33-uniform hypergraphs whose uniform Turán density is known are those with zero uniform Turán density classified by Reiher, Rödl and Schacht [J. London Math. Soc. 97 (2018), 77–97] and a specific family with uniform Turán density equal to 1/271/27.

In this talk, we give an introduction to the concept of uniform Turán densities, present a way to obtain lower bounds using color schemes, and give a glimpse of the proof for determining the uniform Turán density of the tight 33-uniform cycle Cℓ(3)C_\ell^{(3)}, ℓ≥5\ell\ge 5.